23 research outputs found

    Object-oriented Neural Programming (OONP) for Document Understanding

    Full text link
    We propose Object-oriented Neural Programming (OONP), a framework for semantically parsing documents in specific domains. Basically, OONP reads a document and parses it into a predesigned object-oriented data structure (referred to as ontology in this paper) that reflects the domain-specific semantics of the document. An OONP parser models semantic parsing as a decision process: a neural net-based Reader sequentially goes through the document, and during the process it builds and updates an intermediate ontology to summarize its partial understanding of the text it covers. OONP supports a rich family of operations (both symbolic and differentiable) for composing the ontology, and a big variety of forms (both symbolic and differentiable) for representing the state and the document. An OONP parser can be trained with supervision of different forms and strength, including supervised learning (SL) , reinforcement learning (RL) and hybrid of the two. Our experiments on both synthetic and real-world document parsing tasks have shown that OONP can learn to handle fairly complicated ontology with training data of modest sizes.Comment: accepted by ACL 201

    Weakly Supervised Reasoning by Neuro-Symbolic Approaches

    Full text link
    Deep learning has largely improved the performance of various natural language processing (NLP) tasks. However, most deep learning models are black-box machinery, and lack explicit interpretation. In this chapter, we will introduce our recent progress on neuro-symbolic approaches to NLP, which combines different schools of AI, namely, symbolism and connectionism. Generally, we will design a neural system with symbolic latent structures for an NLP task, and apply reinforcement learning or its relaxation to perform weakly supervised reasoning in the downstream task. Our framework has been successfully applied to various tasks, including table query reasoning, syntactic structure reasoning, information extraction reasoning, and rule reasoning. For each application, we will introduce the background, our approach, and experimental results.Comment: Compendium of Neurosymbolic Artificial Intelligence, 665--692, 2023, IOS Pres

    GPT-NAS: Neural Architecture Search with the Generative Pre-Trained Model

    Full text link
    Neural Architecture Search (NAS) has emerged as one of the effective methods to design the optimal neural network architecture automatically. Although neural architectures have achieved human-level performances in several tasks, few of them are obtained from the NAS method. The main reason is the huge search space of neural architectures, making NAS algorithms inefficient. This work presents a novel architecture search algorithm, called GPT-NAS, that optimizes neural architectures by Generative Pre-Trained (GPT) model. In GPT-NAS, we assume that a generative model pre-trained on a large-scale corpus could learn the fundamental law of building neural architectures. Therefore, GPT-NAS leverages the generative pre-trained (GPT) model to propose reasonable architecture components given the basic one. Such an approach can largely reduce the search space by introducing prior knowledge in the search process. Extensive experimental results show that our GPT-NAS method significantly outperforms seven manually designed neural architectures and thirteen architectures provided by competing NAS methods. In addition, our ablation study indicates that the proposed algorithm improves the performance of finely tuned neural architectures by up to about 12% compared to those without GPT, further demonstrating its effectiveness in searching neural architectures

    Sugarcane bagasse dietary fiber as an adjuvant therapy for stable chronic obstructive pulmonary disease: a four-center, randomized, double-blind, placebo-controlled study

    Get PDF
    AbstractObjectiveTo evaluate the efficacy and safety of sugarcane bagasse dietary fiber as an adjuvant therapy for improving quality of life in patients with stable chronic obstructive pulmonary disease (COPD).MethodsThis was a multicenter, randomized, double-blind, placebo-controlled trial. A total of 196 participants were randomized into a trial group (treated with 6 g/day sugarcane bagasse plus conventional treatment, n = 98) and a control group (treated with placebo plus conventional treatment, n = 98). All efficacy analyses were performed according to the intention-to-treat (ITT) principle. A per-protocol analysis set (PPS) was used to analyze the cases that completed the clinical trial with good compliance. The trial period was 30 days, with a 6-month follow-up. Pre- and post-treatment pulmonary symptom scores (cough, sputum, wheezing, and dyspnea) were recorded for both groups. The St. George's Respiratory Questionnaire (SGRQ) and the modified Medical Research Council (mMRC) dyspnea scale were assessed before treatment and at the end of the 6-month follow-up.ResultsThe ITT population was 178 and the PPS population was 166. Post-treatment pulmonary clinical symptoms and severity of dyspnea (mMRC and SGRQ evaluation) were significantly improved in both the trial group and the control group (ITT and PPS: P < 0.05). However, there was no statistical difference between the two groups in post-treatment pulmonary symptoms and mMRC. There was a greater reduction in the SGRQ subscales of activity, effect and total score in the trial group compared with the control group (ITT and PPS: P < 0.01). There was no statistical difference in pre- and post-treatment safety variables in either group.ConclusionSugarcane bagasse combined with conventional treatment improved quality of life in patients with stable COPD. Sugarcane bagasse appears to be a safe herbal medicine with potential for treating patients with stable COPD when taken orally as an adjuvant therapy

    Refined Qingkailing Protects MCAO Mice from Endoplasmic Reticulum Stress-Induced Apoptosis with a Broad Time Window

    Get PDF
    In the current study, we are investigating effect of refined QKL on ischemia-reperfusion-induced brain injury in mice. Methods. Mice were employed to induce ischemia-reperfusion injury of brain by middle cerebral artery occlusion (MCAO). RQKL solution was administered with different doses (0, 1.5, 3, and 6 mL/kg body weight) at the same time of onset of ischemia, and with the dose of 1.5 mL/kg at different time points (0, 1.5, 3, 6, and 9 h after MCAO). Neurological function and brain infarction were examined and cell apoptosis and ROS at prefrontal cortex were evaluated 24 h after MCAO, and western blot and intracellular calcium were also researched, respectively. Results. RQKL of all doses can improve neurological function and decrease brain infarction, and it performed significant effect in 0, 1.5, 3, and 6 h groups. Moreover, RQKL was able to reduce apoptotic process by reduction of caspase-3 expression, or restraint of eIF2a phosphorylation and caspase-12 activation. It was also able to reduce ROS and modulate intracellular calcium in the brain. Conclusion. RQKL can prevent ischemic-induced brain injury with a time window of 6 h, and its mechanism might be related to suppress ER stress-mediated apoptotic signaling

    Rapamycin Nano-Micelle Ophthalmic Solution Reduces Corneal Allograft Rejection by Potentiating Myeloid-Derived Suppressor Cells' Function

    Get PDF
    Allograft rejection is the major cause of corneal allograft failure. Rapamycin (RAPA) has been reported as an effective and novel immunosuppressive agent for patients undergoing corneal transplantation. However, its high water insolubility and low bioavailability have strongly constrained its clinical application. In this study, we successfully developed a RAPA nano-micelle ophthalmic solution and found that corneal allograft survival in recipients treated with RAPA nano-micelle ophthalmic solution was significantly prolonged for more than 2 months, with less inflammatory infiltration, decreased production of pro-inflammatory factors, and elevated recruitment of myeloid-derived suppressor cells (MDSCs). MDSCs from mice treated with RAPA nano-micelle ophthalmic solution could significantly inhibit the proliferation of CD4+T cells through increased expressions of inducible nitric oxidase (iNOS) and arginase-1 (Arg-1). The activity blockade of Arg-1 and iNOS pharmacologically reversed their immunosuppressive ability. Moreover, the effects of RAPA were antagonized by the administration of anti-Gr-1 antibody or by inhibiting the activity of iNOS pharmacologically. In addition, RAPA nano-micelle also effectively alleviated allograft rejection in high-risk rabbit penetrating keratoplasty (PKP) models with corneal vascularization. Collectively, our results demonstrate that RAPA nano-micelle ophthalmic solution could improve the immunosuppressive activity of MDSCs through elevated expression of Arg-1 and iNOS, which highlights the possible therapeutic applications of RAPA against corneal allograft rejection
    corecore